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Because of this kind of striking behaviour, the quantum Hall effect has been a con-
stant source of new ideas, providing hints of where to look for interesting and novel
phenomena, most of them related to the ways in which the mathematics of topology
impinges on quantum physics. Important examples include the subject of topological
insulators, topological order and topological quantum computing. All of them have
their genesis in the quantum Hall effect.

Underlying all of these phenomena is an impressive theoretical edifice, which involves
a tour through some of the most beautiful and important developments in theoretical
and mathematical physics over the past decades. The first attack on the problem fo-
cussed on the microscopic details of the electron wavefunctions. Subsequent approaches
looked at the system from a more coarse-grained, field-theoretic perspective where a
subtle construction known as Chern-Simons theory plays the key role. Yet another
perspective comes from the edge of the sample where certain excitations live that know
more about what’s happening inside than you might think. The main purpose of these
lectures is to describe these different approaches and the intricate and surprising links
between them.

1.2 The Classical Hall Effect

The original, classical Hall effect was discovered in 1879 by Edwin Hall. It is a simple
consequence of the motion of charged particles in a magnetic field. We’ll start these
lectures by reviewing the underlying physics of the Hall effect. This will provide a
useful background for our discussion of the quantum Hall effect.

Here’s the set-up. We turn on a constant mag- B
netic field, B pointing in the z-direction. Meanwhile, ?

Ix

the electrons are restricted to move only in the (x, y)- % ‘
plane. A constant current / is made to flow in the

x-direction. The Hall effect is the statement that

this induces a voltage Vi (H is for “Hall”) in the Figure 1: The classical Hall ef-
y-direction. This is shown in the figure to the right. fect

1.2.1 Classical Motion in a Magnetic Field

The Hall effect arises from the fact that a magnetic field causes charged particles to
move in circles. Let’s recall the basics. The equation of motion for a particle of mass
m and charge —e in a magnetic field is

dv

mE:—eva



When the magnetic field points in the z-direction, so that B = (0,0, B), and the particle
moves only in the transverse plane, so v = (&,9,0), the equations of motion become
two, coupled differential equations

mi = —eBy and mij =eDB% (1.1)

The general solution is

x(t) = X — Rsin(wpt + ¢) and y(t) =Y + Rcos(wpt + ¢) (1.2)

We see that the particle moves in a circle which, for B > 0, is in .
an anti-clockwise direction. The centre of the circle, (X,Y), the @
radius of the circle R and the phase ¢ are all arbitrary. These Q

are the four integration constants from solving the two second

order differential equations. However, the frequency with which

the particle goes around the circle is fixed, and given by Figure 2:
eB
wp — — (13)
m

This is called the cyclotron frequency.

1.2.2 The Drude Model

Let’s now repeat this calculation with two further ingredients. The first is an electric
field, E. This will accelerate the charges and, in the absence of a magnetic field, would
result in a current in the direction of E. The second ingredient is a linear friction term,
which is supposed to capture the effect of the electron bouncing off whatever impedes
its progress, whether impurities, the underlying lattice or other electrons. The resulting
equation of motion is

m— =—E—evxB—-— (1.4)

The coefficient 7 in the friction term is called the scattering time. It can be thought of
as the average time between collisions.

The equation of motion (1.4) is the simplest model of charge transport, treating the
mobile electrons as if they were classical billiard balls. It is called the Drude model and
we met it already in the lectures on FElectromagnetism.



We're interested in equilibrium solutions of (1.4) which have dv/dt = 0. The velocity
of the particle must then solve

viTvxB=-2E (1.5)
m m
The current density J is related to the velocity by

J = —nev

where n is the density of charge carriers. In matrix notation, (1.5) then becomes

1  wgT J:eQnTE
—wpT 1 m

We can invert this matrix to get an equation of the form

J=0cE

This equation is known as Ohm’s law: it tells us how the current flows in response to
an electric field. The proportionality constant o is the conductivity. The slight novelty
is that, in the presence of a magnetic field, o is not a single number: it is a matrix. It
is sometimes called the conductivity tensor. We write it as

o= 7 T (1.6)
_Umy Ozx

The structure of the matrix, with identical diagonal components, and equal but opposite
off-diagonal components, follows from rotational invariance. From the Drude model,
we get the explicit expression for the conductivity,

2

OpC 1 —wpT . ne-t
=— with/ opc =
I+wpm® \wer 1 m

Here opc is the DC conductivity in the absence of a magnetic field. (This is the same
result that we derived in the Electromagnetism lectures). The off-diagonal terms in the
matrix are responsible for the Hall effect: in equilibrium, a current in the z-direction
requires an electric field with a component in the y-direction.



Although it’s not directly relevant for our story, it’s worth pausing to think about how
we actually approach equilibrium in the Hall effect. We start by putting an electric field
in the z-direction. This gives rise to a current density J,, but this current is deflected
due to the magnetic field and bends towards the y-direction. In a finite material, this
results in a build up of charge along the edge and an associated electric field £),. This
continues until the electric field E, cancels the bending of due to the magnetic field,
and the electrons then travel only in the z-direction. It’s this induced electric field £,
which is responsible for the Hall voltage V.

Resistivity vs Resistance

The resistivity is defined as the inverse of the conductivity. This remains true when

—Pzxy Pyy

From the Drude model, we have

1 1
p= — wBT (1.8)
Opc \ —wpTt 1

The off-diagonal components of the resistivity tensor, p,, = wpT/opc, have a couple

both are matrices,

of rather nice properties. First, they are independent of the scattering time 7. This
means that they capture something fundamental about the material itself as opposed
to the dirty messy stuff that’s responsible for scattering.

The second nice property is to do with what we measure. Usually we measure the
resistance R, which differs from the resistivity p by geometric factors. However, for
Pzy, these two things coincide. To see this, consider a sample of material of length L
in the y-direction. We drop a voltage V, in the y-direction and measure the resulting
current I, in the z-direction. The transverse resistance is
Vy _LE, E,

By =g =77, =0, = P

This has the happy consequence that what we calculate, p,,, and what we measure,
R,,, are, in this case, the same. In contrast, if we measure the longitudinal resistance
R, then we’ll have to divide by the appropriate lengths to extract the resistivity p...
Of course, these lectures are about as theoretical as they come. We’re not actually
going to measure anything. Just pretend.



While we’re throwing different definitions around, here’s one more. For a current I,
flowing in the z-direction, and the associated electric field £, in the y-direction, the
Hall coefficient is defined by

_ By pay
Bn==75""5
So in the Drude model, we have
1
Ry= o2 = —

Bope  ne

As promised, we see that the Hall coefficient depends only on microscopic information
about the material: the charge and density of the conducting particles. The Hall
coefficient does not depend on the scattering time 7; it is insensitive to whatever friction
processes are at play in the material.

We now have all we need to make an experimental predic-
tion! The two resistivities should be Pry

and  pgy = —

Pzz = 2
ne<Tt ne

Note that only p,, depends on the scattering time 7, and p,, — 0

as scattering processes become less important and 7 — oo. If B
we plot the two resistivities as a function of the magnetic field, Figure 3:
then our classical expectation is that they should look the figure '

on the right.

1.3 Quantum Hall Effects

Now we understand the classical expectation. And, of course, this expectation is borne
out whenever we can trust classical mechanics. But the world is governed by quantum
mechanics. This becomes important at low temperatures and strong magnetic fields
where more interesting things can happen.

It’s useful to distinguish between two different quantum Hall effects which are asso-
ciated to two related phenomena. These are called the integer and fractional quantum
Hall effects. Both were first discovered experimentally and only subsequently under-
stood theoretically. Here we summarise the basic facts about these effects. The goal of
these lectures is to understand in more detail what’s going on.

— 10 —



1.3.1 Integer Quantum Hall Effect

The first experiments exploring the quantum regime of the Hall effect were performed in
1980 by von Klitzing, using samples prepared by Dorda and Pepper!. The resistivities
look like this:

ke § i=2

This is the integer quantum Hall effect. For this, von Klitzing was awarded the 1985
Nobel prize.

Both the Hall resistivity p,, and the longitudinal resistivity p,, exhibit interesting
behaviour. Perhaps the most striking feature in the data is the fact that the Hall
resistivity p,, sits on a plateau for a range of magnetic field, before jumping suddenly
to the next plateau. On these plateau, the resistivity takes the value

_27rh1

Pay = vel (1.9)

e v
The value of v is measured to be an integer to an extraordinary accuracy. The quantity
27h/e? is called the quantum of resistivity (with —e, the electron charge). It is now used
as the standard for measuring of resistivity. Because v is measured to be an integer to
such remarkable precision — different devices differ only by 3 parts in 10'° — the integer
quantum Hall effect is now used as the basis for measuring the ratio of fundamental
constants 27/ /e? sometimes referred to as the von Klitzing constant?. This means that,
by definition, the v = 1 state in (1.9) is exactly integer!

'K. v Klitzing, G. Dorda, M. Pepper, “New Method for High-Accuracy Determination of the Fine-
Structure Constant Based on Quantized Hall Resistance”, Phys. Rev. Lett. 45 494.
2Full details of the different quantum Hall set ups and ways to measure the Hall resistivity can

be found in B. Jeckelmann and B. Jeanneret, “The quantum Hall effect as an electrical resistance
standard’, Rep. Prog. Phys. 64, 1603-1655 (2001).
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The centre of each of these plateaux occurs when the magnetic field takes the value

B 2mhn
e

B

n
= —d,
v

where n is the electron density and ®q = 2wh/e is known as the flux quantum. As we
will review in Section 2, these are the values of the magnetic field at which the first
v € Z Landau levels are filled. In fact, as we will see, it is very easy to argue that the
Hall resistivity should take value (1.9) when v Landau levels are filled. The surprise is
that the plateau exists, with the quantisation persisting over a range of magnetic fields.

There is a clue in the experimental data about the origin of the plateaux. Experi-
mental systems are typically dirty, filled with impurities. The technical name for this
is disorder. Usually one wants to remove this dirt to get at the underlying physics.
Yet, in the quantum Hall effect, as you increase the amount of disorder (within reason)
the plateaux become more prominent, not less. In fact, in the absence of disorder, the
plateaux are expected to vanish completely. That sounds odd: how can the presence
of dirt give rise to something as exact and pure as an integer? This is something we
will explain in Section 2.

The longitudinal resistivity p,, also exhibits a surprise. When p,, sits on a plateau,
the longitudinal resistivity vanishes: p,, = 0. It spikes only when p,, jumps to the
next plateau.

Usually we would think of a system with p,, = 0 as a perfect conductor. But
there’s something a little counter-intuitive about vanishing resistivity in the presence
of a magnetic field. To see this, we can return to the simple definition (1.7) which, in
components, reads

Paz

= m and Oy = & (110)
Tx Ty

P2. + P2,

O-zx

If pyy = 0 then we get the familiar relation between conductivity and resistivity: o,, =
1/pye. But if p,y, # 0, then we have the more interesting relation above. In particular,
we see

Pz =0 = 0,,=0 (if pyy #0)

While we would usually call a system with p,, = 0 a perfect conductor, we would
usually call a system with o,, = 0 a perfect insulator! What’s going on?

— 12 —



This particular surprise has more to do with the words we use to describe the phe-
nomena than the underlying physics. In particular, it has nothing to do with quantum
mechanics: this behaviour occurs in the Drude model in the limit 7 — oo where there
is no scattering. In this situation, the current is flowing perpendicular to the applied
electric field, so E-J = 0. But recall that E - J has the interpretation as the work
done in accelerating charges. The fact that this vanishes means that we have a steady
current flowing without doing any work and, correspondingly, without any dissipation.
The fact that o,, = 0 is telling us that no current is flowing in the longitudinal direction
(like an insulator) while the fact that p,, = 0 is telling us that there is no dissipation
of energy (like in a perfect conductor).

1.3.2 Fractional Quantum Hall Effect

As the disorder is decreased, the integer Hall plateaux become less prominent. But
other plateaux emerge at fractional values. This was discovered in 1982 by Tsui and
Stormer using samples prepared by Gossard®. The resistivities look like this:

3 — z
7
7
P

2.5 2

R, (hle?)

Magnetic field (T)

This is the fractional quantum Hall effect. On the plateaux, the Hall resistivity again
takes the simple form (1.9), but now with v a rational number

veQ

Not all fractions appear. The most prominent plateaux sit at v = 1/3,1/5 (not shown
above) and 2/5 but there are many more. The vast majority of these have denominators
which are odd. But there are exceptions: in particular a clear plateaux has been
observed at v = 5/2.

3D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-Dimensional Magnetotransport in the Extreme
Quantum Limit’, Phys. Rev. Lett. 48 (1982)15509.
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