
 















Because of this kind of striking behaviour, the quantum Hall e↵ect has been a con-

stant source of new ideas, providing hints of where to look for interesting and novel

phenomena, most of them related to the ways in which the mathematics of topology

impinges on quantum physics. Important examples include the subject of topological

insulators, topological order and topological quantum computing. All of them have

their genesis in the quantum Hall e↵ect.

Underlying all of these phenomena is an impressive theoretical edifice, which involves

a tour through some of the most beautiful and important developments in theoretical

and mathematical physics over the past decades. The first attack on the problem fo-

cussed on the microscopic details of the electron wavefunctions. Subsequent approaches

looked at the system from a more coarse-grained, field-theoretic perspective where a

subtle construction known as Chern-Simons theory plays the key role. Yet another

perspective comes from the edge of the sample where certain excitations live that know

more about what’s happening inside than you might think. The main purpose of these

lectures is to describe these di↵erent approaches and the intricate and surprising links

between them.

1.2 The Classical Hall E↵ect

The original, classical Hall e↵ect was discovered in 1879 by Edwin Hall. It is a simple

consequence of the motion of charged particles in a magnetic field. We’ll start these

lectures by reviewing the underlying physics of the Hall e↵ect. This will provide a

useful background for our discussion of the quantum Hall e↵ect.

Here’s the set-up. We turn on a constant mag-
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Figure 1: The classical Hall ef-

fect

netic field, B pointing in the z-direction. Meanwhile,

the electrons are restricted to move only in the (x, y)-

plane. A constant current I is made to flow in the

x-direction. The Hall e↵ect is the statement that

this induces a voltage VH (H is for “Hall”) in the

y-direction. This is shown in the figure to the right.

1.2.1 Classical Motion in a Magnetic Field

The Hall e↵ect arises from the fact that a magnetic field causes charged particles to

move in circles. Let’s recall the basics. The equation of motion for a particle of mass

m and charge �e in a magnetic field is

m
dv

dt
= �ev ⇥B
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When the magnetic field points in the z-direction, so thatB = (0, 0, B), and the particle

moves only in the transverse plane, so v = (ẋ, ẏ, 0), the equations of motion become

two, coupled di↵erential equations

mẍ = �eBẏ and mÿ = eBẋ (1.1)

The general solution is

x(t) = X �R sin(!Bt+ �) and y(t) = Y +R cos(!Bt+ �) (1.2)

We see that the particle moves in a circle which, for B > 0, is in
B

Figure 2:

an anti-clockwise direction. The centre of the circle, (X, Y ), the

radius of the circle R and the phase � are all arbitrary. These

are the four integration constants from solving the two second

order di↵erential equations. However, the frequency with which

the particle goes around the circle is fixed, and given by

!B =
eB

m
(1.3)

This is called the cyclotron frequency.

1.2.2 The Drude Model

Let’s now repeat this calculation with two further ingredients. The first is an electric

field, E. This will accelerate the charges and, in the absence of a magnetic field, would

result in a current in the direction of E. The second ingredient is a linear friction term,

which is supposed to capture the e↵ect of the electron bouncing o↵ whatever impedes

its progress, whether impurities, the underlying lattice or other electrons. The resulting

equation of motion is

m
dv

dt
= �eE� ev ⇥B� mv

⌧
(1.4)

The coe�cient ⌧ in the friction term is called the scattering time. It can be thought of

as the average time between collisions.

The equation of motion (1.4) is the simplest model of charge transport, treating the

mobile electrons as if they were classical billiard balls. It is called the Drude model and

we met it already in the lectures on Electromagnetism.
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We’re interested in equilibrium solutions of (1.4) which have dv/dt = 0. The velocity

of the particle must then solve

v +
e⌧

m
v ⇥B = �e⌧

m
E (1.5)

The current density J is related to the velocity by

J = �nev

where n is the density of charge carriers. In matrix notation, (1.5) then becomes

 
1 !B⌧

�!B⌧ 1

!
J =

e2n⌧

m
E

We can invert this matrix to get an equation of the form

J = �E

This equation is known as Ohm’s law: it tells us how the current flows in response to

an electric field. The proportionality constant � is the conductivity. The slight novelty

is that, in the presence of a magnetic field, � is not a single number: it is a matrix. It

is sometimes called the conductivity tensor. We write it as

� =

 
�xx �xy

��xy �xx

!
(1.6)

The structure of the matrix, with identical diagonal components, and equal but opposite

o↵-diagonal components, follows from rotational invariance. From the Drude model,

we get the explicit expression for the conductivity,

� =
�DC

1 + !2
B
⌧ 2

 
1 �!B⌧

!B⌧ 1

!
with �DC =

ne2⌧

m

Here �DC is the DC conductivity in the absence of a magnetic field. (This is the same

result that we derived in the Electromagnetism lectures). The o↵-diagonal terms in the

matrix are responsible for the Hall e↵ect: in equilibrium, a current in the x-direction

requires an electric field with a component in the y-direction.
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Although it’s not directly relevant for our story, it’s worth pausing to think about how

we actually approach equilibrium in the Hall e↵ect. We start by putting an electric field

in the x-direction. This gives rise to a current density Jx, but this current is deflected

due to the magnetic field and bends towards the y-direction. In a finite material, this

results in a build up of charge along the edge and an associated electric field Ey. This

continues until the electric field Ey cancels the bending of due to the magnetic field,

and the electrons then travel only in the x-direction. It’s this induced electric field Ey

which is responsible for the Hall voltage VH .

Resistivity vs Resistance

The resistivity is defined as the inverse of the conductivity. This remains true when

both are matrices,

⇢ = ��1 =

 
⇢xx ⇢xy

�⇢xy ⇢yy

!
(1.7)

From the Drude model, we have

⇢ =
1

�DC

 
1 !B⌧

�!B⌧ 1

!
(1.8)

The o↵-diagonal components of the resistivity tensor, ⇢xy = !B⌧/�DC , have a couple

of rather nice properties. First, they are independent of the scattering time ⌧ . This

means that they capture something fundamental about the material itself as opposed

to the dirty messy stu↵ that’s responsible for scattering.

The second nice property is to do with what we measure. Usually we measure the

resistance R, which di↵ers from the resistivity ⇢ by geometric factors. However, for

⇢xy, these two things coincide. To see this, consider a sample of material of length L

in the y-direction. We drop a voltage Vy in the y-direction and measure the resulting

current Ix in the x-direction. The transverse resistance is

Rxy =
Vy

Ix
=

LEy

LJx
=

Ey

Jx
= �⇢xy

This has the happy consequence that what we calculate, ⇢xy, and what we measure,

Rxy, are, in this case, the same. In contrast, if we measure the longitudinal resistance

Rxx then we’ll have to divide by the appropriate lengths to extract the resistivity ⇢xx.

Of course, these lectures are about as theoretical as they come. We’re not actually

going to measure anything. Just pretend.
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While we’re throwing di↵erent definitions around, here’s one more. For a current Ix
flowing in the x-direction, and the associated electric field Ey in the y-direction, the

Hall coe�cient is defined by

RH = � Ey

JxB
=

⇢xy
B

So in the Drude model, we have

RH =
!B

B�DC

=
1

ne

As promised, we see that the Hall coe�cient depends only on microscopic information

about the material: the charge and density of the conducting particles. The Hall

coe�cient does not depend on the scattering time ⌧ ; it is insensitive to whatever friction

processes are at play in the material.

We now have all we need to make an experimental predic-
ρ

xy

ρ
xx

B

Figure 3:

tion! The two resistivities should be

⇢xx =
m

ne2⌧
and ⇢xy =

B

ne

Note that only ⇢xx depends on the scattering time ⌧ , and ⇢xx ! 0

as scattering processes become less important and ⌧ ! 1. If

we plot the two resistivities as a function of the magnetic field,

then our classical expectation is that they should look the figure

on the right.

1.3 Quantum Hall E↵ects

Now we understand the classical expectation. And, of course, this expectation is borne

out whenever we can trust classical mechanics. But the world is governed by quantum

mechanics. This becomes important at low temperatures and strong magnetic fields

where more interesting things can happen.

It’s useful to distinguish between two di↵erent quantum Hall e↵ects which are asso-

ciated to two related phenomena. These are called the integer and fractional quantum

Hall e↵ects. Both were first discovered experimentally and only subsequently under-

stood theoretically. Here we summarise the basic facts about these e↵ects. The goal of

these lectures is to understand in more detail what’s going on.
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1.3.1 Integer Quantum Hall E↵ect

The first experiments exploring the quantum regime of the Hall e↵ect were performed in

1980 by von Klitzing, using samples prepared by Dorda and Pepper1. The resistivities

look like this:

This is the integer quantum Hall e↵ect. For this, von Klitzing was awarded the 1985

Nobel prize.

Both the Hall resistivity ⇢xy and the longitudinal resistivity ⇢xx exhibit interesting

behaviour. Perhaps the most striking feature in the data is the fact that the Hall

resistivity ⇢xy sits on a plateau for a range of magnetic field, before jumping suddenly

to the next plateau. On these plateau, the resistivity takes the value

⇢xy =
2⇡~
e2

1

⌫
⌫ 2 Z (1.9)

The value of ⌫ is measured to be an integer to an extraordinary accuracy. The quantity

2⇡~/e2 is called the quantum of resistivity (with �e, the electron charge). It is now used

as the standard for measuring of resistivity. Because ⌫ is measured to be an integer to

such remarkable precision – di↵erent devices di↵er only by 3 parts in 1010 – the integer

quantum Hall e↵ect is now used as the basis for measuring the ratio of fundamental

constants 2⇡~/e2 sometimes referred to as the von Klitzing constant2. This means that,

by definition, the ⌫ = 1 state in (1.9) is exactly integer!

1K. v Klitzing, G. Dorda, M. Pepper, “New Method for High-Accuracy Determination of the Fine-
Structure Constant Based on Quantized Hall Resistance”, Phys. Rev. Lett. 45 494.

2Full details of the di↵erent quantum Hall set ups and ways to measure the Hall resistivity can
be found in B. Jeckelmann and B. Jeanneret, “The quantum Hall e↵ect as an electrical resistance
standard”, Rep. Prog. Phys. 64, 1603-1655 (2001).

– 11 –



The centre of each of these plateaux occurs when the magnetic field takes the value

B =
2⇡~n
⌫e

=
n

⌫
�0

where n is the electron density and �0 = 2⇡~/e is known as the flux quantum. As we

will review in Section 2, these are the values of the magnetic field at which the first

⌫ 2 Z Landau levels are filled. In fact, as we will see, it is very easy to argue that the

Hall resistivity should take value (1.9) when ⌫ Landau levels are filled. The surprise is

that the plateau exists, with the quantisation persisting over a range of magnetic fields.

There is a clue in the experimental data about the origin of the plateaux. Experi-

mental systems are typically dirty, filled with impurities. The technical name for this

is disorder. Usually one wants to remove this dirt to get at the underlying physics.

Yet, in the quantum Hall e↵ect, as you increase the amount of disorder (within reason)

the plateaux become more prominent, not less. In fact, in the absence of disorder, the

plateaux are expected to vanish completely. That sounds odd: how can the presence

of dirt give rise to something as exact and pure as an integer? This is something we

will explain in Section 2.

The longitudinal resistivity ⇢xx also exhibits a surprise. When ⇢xy sits on a plateau,

the longitudinal resistivity vanishes: ⇢xx = 0. It spikes only when ⇢xy jumps to the

next plateau.

Usually we would think of a system with ⇢xx = 0 as a perfect conductor. But

there’s something a little counter-intuitive about vanishing resistivity in the presence

of a magnetic field. To see this, we can return to the simple definition (1.7) which, in

components, reads

�xx =
⇢xx

⇢2
xx

+ ⇢2
xy

and �xy =
�⇢xy

⇢2
xx

+ ⇢2
xy

(1.10)

If ⇢xy = 0 then we get the familiar relation between conductivity and resistivity: �xx =

1/⇢xx. But if ⇢xy 6= 0, then we have the more interesting relation above. In particular,

we see

⇢xx = 0 ) �xx = 0 (if ⇢xy 6= 0)

While we would usually call a system with ⇢xx = 0 a perfect conductor, we would

usually call a system with �xx = 0 a perfect insulator! What’s going on?
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This particular surprise has more to do with the words we use to describe the phe-

nomena than the underlying physics. In particular, it has nothing to do with quantum

mechanics: this behaviour occurs in the Drude model in the limit ⌧ ! 1 where there

is no scattering. In this situation, the current is flowing perpendicular to the applied

electric field, so E · J = 0. But recall that E · J has the interpretation as the work

done in accelerating charges. The fact that this vanishes means that we have a steady

current flowing without doing any work and, correspondingly, without any dissipation.

The fact that �xx = 0 is telling us that no current is flowing in the longitudinal direction

(like an insulator) while the fact that ⇢xx = 0 is telling us that there is no dissipation

of energy (like in a perfect conductor).

1.3.2 Fractional Quantum Hall E↵ect

As the disorder is decreased, the integer Hall plateaux become less prominent. But

other plateaux emerge at fractional values. This was discovered in 1982 by Tsui and

Störmer using samples prepared by Gossard3. The resistivities look like this:

This is the fractional quantum Hall e↵ect. On the plateaux, the Hall resistivity again

takes the simple form (1.9), but now with ⌫ a rational number

⌫ 2 Q

Not all fractions appear. The most prominent plateaux sit at ⌫ = 1/3, 1/5 (not shown

above) and 2/5 but there are many more. The vast majority of these have denominators

which are odd. But there are exceptions: in particular a clear plateaux has been

observed at ⌫ = 5/2.

3D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-Dimensional Magnetotransport in the Extreme
Quantum Limit”, Phys. Rev. Lett. 48 (1982)1559.
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